The modal logic of Reverse Mathematics
نویسندگان
چکیده
The implication relationship between subsystems in Reverse Mathematics has an underlying logic, which can be used to deduce certain new Reverse Mathematics results from existing ones in a routine way. We use techniques of modal logic to formalize the logic of Reverse Mathematics into a system that we name s-logic. We argue that s-logic captures precisely the “logical” content of the implication and nonimplication relations between subsystems in Reverse Mathematics. We present a sound, complete, decidable, and compact tableaustyle deductive system for s-logic, and explore in detail two fragments that are particularly relevant to Reverse Mathematics practice and automated theorem proving of Reverse Mathematics results.
منابع مشابه
Suhrawardi's Modal Syllogisms
Suhrawardi’s logic of the Hikmat al-Ishraq is basically modal. So to understand his modal logic one first has to know the non-modal part upon which his modal logic is built. In my previous paper ‘Suhrawardi on Syllogisms’(3) I discussed the former in detail. The present paper is an exposition of his treatment of modal syllogisms. On the basis of some reasonable existential presuppositi...
متن کاملModal Extensions of Sub-classical Logics for Recovering Classical Logic
In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show...
متن کاملA New Coalgebraic Semantics for Positive Modal Logic
Positive Modal Logic is the restriction of the modal local consequence relation defined by the class of all Kripke models to the propositional negation-free modal language. The class of positive modal algebras is the one canonically associated with PML according to the theory of Abstract Algebraic Logic. In [4], a Priestley-style duality is established between the category of positive modal alg...
متن کاملHilbert algebras with a necessity modal operator
Received 12 December 2013 1991 Mathematics Subject Classification: 03G25; 06D05
متن کاملAn Introduction to the Use of Fuzzy Mathematics in Archeology (Case Study: Virtual Reconstruction of Togrul Tower by Using Fuzzy Reliability)
Nowadays, the use of fuzzy mathematics and fuzzy logic are increasing in various sciences. Archaeology is one of the sciences that is less attended with the methods of fuzzy mathematics and fuzzy logic. Due to the nature of many archaeological data, however, the use of such methods in archaeology can be beneficial. In this research, it has been tried to explain applications of fuzzy logic and f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 54 شماره
صفحات -
تاریخ انتشار 2015